Localization of rat CLC-K2 chloride channel mRNA in the kidney.

نویسندگان

  • Momono Yoshikawa
  • Shinichi Uchida
  • Atsushi Yamauchi
  • Akiko Miyai
  • Yujiro Tanaka
  • Sei Sasaki
  • Fumiaki Marumo
چکیده

To gain insight into the physiological role of a kidney-specific chloride channel, CLC-K2, the exact intrarenal localization was determined by in situ hybridization. In contrast to the inner medullary localization of CLC-K1, the signal of CLC-K2 in our in situ hybridization study was highly evident in the superficial cortex, moderate in the outer medulla, and absent in the inner medulla. To identify the nephron segments where CLC-K2 mRNA was expressed, we performed in situ hybridization of CLC-K2 and immunohistochemistry of marker proteins (Na+/Ca2+exchanger, Na+-Cl-cotransporter, aquaporin-2 water channel, and Tamm-Horsfall glycoprotein) in sequential sections of a rat kidney. Among the tubules of the superficial cortex, CLC-K2 mRNA was highly expressed in the distal convoluted tubules, connecting tubules, and cortical collecting ducts. The expression of CLC-K2 in the outer and inner medullary collecting ducts was almost absent. In contrast, a moderate signal of CLC-K2 mRNA was observed in the medullary thick ascending limb of Henle's loop, but the signal in the cortical thick ascending limb of Henle's loop was low. These results clearly demonstrated that CLC-K2 was not colocalized with CLC-K1 and that its localization along the nephron segments was relatively broad compared with that of CLC-K1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vivo role of CLC chloride channels in the kidney.

Chloride channels in the kidney are involved in important physiological functions such as cell volume regulation, acidification of intracellular vesicles, and transepithelial chloride transport. Among eight mammalian CLC chloride channels expressed in the kidney, three (CLC-K1, CLC-K2, and CLC-5) were identified to be related to kidney diseases in humans or mice. CLC-K1 mediates a transepitheli...

متن کامل

Intrarenal and cellular localization of CLC-K2 protein in the mouse kidney.

CLC-K2, a kidney-specific member of the CLC chloride channel family, is thought to play an important role in the transepithelial Cl(-) transport in the kidney. This consensus was first reached shortly after it was demonstrated that the mutations of the human CLCNKB gene resulted in Bartter's syndrome type III. To clarify the pathogenesis, the exact intrarenal and cellular localization of CLC-K2...

متن کامل

The swelling-activated chloride channel ClC-2, the chloride channel ClC-3, and ClC-5, a chloride channel mutated in kidney stone disease, are expressed in distinct subpopulations of renal epithelial cells.

The mammalian genome encodes at least nine different members of the ClC family of chloride channels. So far only two of them could be localized on a cellular level in the kidney. We now report on the precise intrarenal localization of the mRNAs coding for the chloride channels ClC-2, ClC-3 and ClC-5. Expression of ClC-2 mRNA, encoding a swelling-activated chloride channel, could be demonstrated...

متن کامل

Localization and functional characterization of rat kidney-specific chloride channel, ClC-K1.

To investigate the physiological role of a kidney-specific chloride channel (ClC-K1), we sought to determine its exact localization by immunohistochemistry and its functional regulation using Xenopus oocyte expression system. The antiserum specifically recognized a 70-kD protein in SDS-PAGE of membrane protein from rat inner medulla and an in vitro translated ClC-K1 protein. Immunohistochemistr...

متن کامل

Expression and function of CLC and cystic fibrosis transmembrane conductance regulator chloride channels in renal epithelial tubule cells: pathophysiological implications.

Cl(-) channels play important roles in the regulation of a variety of functions, including electrical excitability, cell volume regulation, transepithelial transport and acidification of cellular organelles. They are expressed in plasma membranes or reside in intracellular organelles. A large number of Cl(-) channels with different functions have been identified. Some of them are highly express...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The American journal of physiology

دوره 276 4 Pt 2  شماره 

صفحات  -

تاریخ انتشار 1999